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Abstract

If a1, . . . , ak and n are positive integers such that n = a1 + · · · + ak, then the
tuple (a1, . . . , ak) is a composition of n of length k. We say that (a1, . . . , ak) strongly
t-intersects (b1, . . . , bk) if there are at least t distinct indices i such that ai = bi. A
set A of compositions is strongly t-intersecting if every two members of A strongly
t-intersect. Let Cn,k be the set of all compositions of n of length k. Ku and Wong
[An analogue of the Erdős-Ko-Rado theorem for weak compositions, Discrete Math-
ematics 313 (2013), 2463–2468] showed that for every two positive integers k and t
with k ≥ t + 2, there exists an integer n0(k, t) such that for n ≥ n0(k, t), the size
of any strongly t-intersecting subset A of Cn,k is at most

(
n−t−1
n−k

)
, and the bound

is attained if and only if A = {(a1, . . . , ak) ∈ Cn,k : ai1 = · · · = ait = 1} for some
distinct i1, . . . , it in {1, . . . , k}. We provide a short proof of this analogue of the
Erdős-Ko-Rado Theorem. It yields an improved value of n0(k, t). We also show that
the condition n ≥ n0(k, t) cannot be replaced by k ≥ k0(t) or n ≥ n0(t) (that is, the
dependence of n on k is inevitable), and we suggest a Frankl-type conjecture about
the extremal structures for any n, k and t.

1 Introduction
Recently, Ku and Wong [18] proved an analogue of the classical Erdős-Ko-Rado Theorem
[7] for weak compositions. In this note we provide a short proof of their result. We set
up the main definitions and notation before stating the result.

Unless otherwise stated, we will use small letters such as x to denote non-negative
integers or functions or elements of a set, capital letters such as X to denote sets, and
calligraphic letters such as F to denote families (that is, sets whose members are sets
themselves). We call a set A an r-element set if its size |A| is r. The family of all subsets
of a set X is denoted by 2X , and the family of all r-element subsets of X is denoted by(
X
r

)
. For any integer n ≥ 1, the set {1, . . . , n} of the first n positive integers is denoted

by [n].
If a1, . . . , ak and n are positive integers such that n =

∑k
i=1 ai, then the k-tuple

(a1, . . . , ak) is a composition of n of length k. If a1, . . . , ak and n are non-negative integers
such that n =

∑k
i=1 ai, then (a1, . . . , ak) is a weak composition of n of length k. Let

Cn,k be the set of all compositions of n of length k, and let Wn,k be the set of all weak
compositions of n of length k. An elementary counting result is that |Wn,k| =

(
n+k−1

n

)
.

Since Wn−k,k = {(a1 − 1, . . . , ak − 1) : (a1, . . . , ak) ∈ Cn,k}, |Cn,k| =
(
n−1
n−k

)
.
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We say that (a1, . . . , ak) strongly t-intersects (b1, . . . , bk) if there exists T ∈
(
[k]
t

)
such

that ai = bi for each i ∈ T . We call a set A of k-tuples strongly t-intersecting if every two
members of A strongly t-intersect.

Recently, Ku and Wong [18] proved the following result.

Theorem 1.1 ([18]) For every two positive integers k and t with k ≥ t+ 2, there exists
an integer n0(k, t) such that for n ≥ n0(k, t), the size of every strongly t-intersecting subset
A of Wn,k is at most

(
n+k−t−1

n

)
, and the bound is attained if and only if for some T ∈

(
[k]
t

)
,

A = {(a1, . . . , ak) ∈ Wn,k : ai = 0 for each i ∈ T}.

We provide a short proof of this result. It yields an improved value of n0(k, t). Let
c(k, t) = (k − t− 1)

(
3k−2t−1

t+1

)
+ t+ 2.

Theorem 1.2 If t ≥ 1, k ≥ t + 2, n ≥ c(k, t), and A is a strongly t-intersecting subset
of Cn,k, then

|A| ≤
(
n− t− 1

n− k

)
,

and equality holds if and only if for some T ∈
(
[k]
t

)
, A = {(a1, . . . , ak) ∈ Cn,k : ai =

1 for each i ∈ T}.

This gives Theorem 1.1 as follows. Let t ≥ 1, k ≥ t + 2, and n ≥ c(k, t) − k. Let A be
a strongly t-intersecting subset of Wn,k, and let A′ = {(a1 + 1, . . . , ak + 1): (a1, . . . , ak) ∈
A}. So A′ is a strongly t-intersecting subset of Cn′,k, where n′ = n + k ≥ c(k, t). By
Theorem 1.2, |A′| ≤

(
n′−t−1
n′−k

)
=
(
n+k−t−1

n

)
, and equality holds if and only if for some T ∈(

[k]
t

)
, A′ = {(a′1, . . . , a′k) ∈ Cn′,k : a

′
i = 1 for each i ∈ T}. So |A| ≤

(
n+k−t−1

n

)
, and equality

holds if and only if for some T ∈
(
[k]
t

)
, A = {(a1, . . . , ak) ∈ Wn,k : ai = 0 for each i ∈ T}.

By a similar argument, Theorem 1.1 implies Theorem 1.2 for n ≥ n0(k, t) + k.
The problem is trivial for t ≤ k ≤ t+1. LetA be a strongly t-intersecting subset of Cn,k.

If k = t, then A can only have one element. If k = t+1 and (a1, . . . , ak), (b1, . . . , bk) ∈ A,
then for some T ∈

(
[k]
t

)
, we have ai = bi for i ∈ T . Only one index is outside T . Since

(a1, . . . , ak) and (b1, . . . , bk) have the same sum n, they must therefore also agree in the
remaining position, so |A| = 1.

The value of n0(k, t) obtained in [18] for Theorem 1.1 is max{
(
(k − t− 1)

(
k
t

))2
, (2k−

2t)2
k−t+1

+1}. As we pointed out above, Theorem 1.1 holds with n ≥ c(k, t)−k. It follows
that Theorem 1.1 holds with n ≥ (k − t− 1)(3k − 2t− 1)t+1.

The dependence of n on t in Theorem 1.2 can be avoided by taking n to be sufficiently
large. A crude way of showing this is that c(k, t) ≤ k

(
3k−2t−1

t+1

)
< k

(
3k
t+1

)
< k

(
3k
b3k/2c

)
; so

the result is true for n ≥ k
(

3k
b3k/2c

)
. In Section 3 we show that the dependence of n on k

is inevitable and that we cannot even replace n ≥ c(k, t) by k ≥ k0(t).
Theorems 1.1 and 1.2 are analogues of the classical Erdős-Ko-Rado (EKR) Theorem

[7], which inspired many results in extremal set theory (see [6, 10, 8, 3]). A family A
of sets is t-intersecting if every two sets in A have at least t common elements. The
EKR Theorem says that for 1 ≤ t ≤ k, there exists an integer n0(k, t) such that for
n ≥ n0(k, t), the size of any t-intersecting subfamily of

(
[n]
k

)
is at most

(
n−t
k−t

)
, which

is the size of the simplest t-intersecting subfamily {A ∈
(
[n]
k

)
: [t] ⊆ A}. It was also

shown in [7] that the smallest possible value of n0(k, 1) is 2k. There are various proofs
of this (see [16, 11, 14, 5]), two of which are particularly short and beautiful: Katona’s
[14], introducing the elegant cycle method, and Daykin’s [5], using the powerful Kruskal-
Katona Theorem [15, 17]. Frankl [9] showed that for t ≥ 15, the smallest possible value
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of n0(k, t) is (k− t+1)(t+1). Subsequently, Wilson [20] proved this for all t ≥ 1. Frankl
[9] conjectured that the size of a largest t-intersecting subfamily of

(
[n]
k

)
is max{|{A ∈(

[n]
k

)
: |A ∩ [t + 2i]| ≥ t + i}| : i ∈ {0} ∪ [k − t]}. A remarkable proof of this conjecture

together with the complete characterisation of the extremal structures was obtained by
Ahlswede and Khachatrian [1]. The t-intersection problem for 2[n] was completely solved
by Katona [16]. These are prominent results in extremal set theory.

As will become clearer in the proof, Theorem 1.2 can also be phrased in terms of t-
intersecting subfamilies of a family. Indeed, it is equivalent to the following: if n ≥ c(k, t)
andA is a t-intersecting subfamily of the family Cn,k = {{(1, a1), . . . , (k, ak)} : (a1, . . . , ak) ∈
Cn,k}, then |A| ≤

(
n−t−1
n−k

)
, and equality holds if and only if for some T ∈

(
[k]
t

)
, A =

{{(1, a1), . . . , (k, ak)} ∈ Cn,k : ai = 1 for each i ∈ T}.
EKR-type results have been obtained in a wide variety of contexts, many of which are

surveyed in [6, 10, 8, 3]. Usually the objects have symmetry properties (see [4, Section 3.2]
and [19]) or enable use of compression operators (also called shift operators) to push t-
intersecting families towards a desired form (see [10, 13, 12]). One of the main motivating
factors behind this note is that although the family Cn,k does not have any of these
properties, we can still determine its largest t-intersecting subfamilies for n sufficiently
large, using more than one method. It is interesting that Ku and Wong [18] managed to
take an inductive approach. We will show that the method in [7] can be adapted to this
framework. However, since Cn,k does not have any of the above properties, the problem
of determining the maximum size of a t-intersecting subfamily of Cn,k for any n, k and t
must be very hard. We conjecture that the extremal structures are similar to those in the
above-mentioned conjecture of Frankl (proved in [1]). We state the conjecture using the
original formulation.

Conjecture 1.3 Let 1 ≤ t ≤ k ≤ n. For i = 0, . . . ,
⌊
k−t
2

⌋
, let Ai = {(a1, . . . , ak) ∈

Cn,k : |{j ∈ [t + 2i] : aj = 1}| ≥ t + i}. The size of a largest strongly t-intersecting subset
of Cn,k is max{|Ai| : 0 ≤ i ≤

⌊
k−t
2

⌋
}.

2 Proof of Theorem 1.2
A t-intersecting family is non-trivial if its members have fewer than t common elements.

The following lemma emerges from [7] (see also [2, Proof of Theorem 2.1]).

Lemma 2.1 If A is a non-trivial t-intersecting family whose members are of size at most
k, then there exists a set J of size at most 3k − 2t− 1 such that |A ∩ J | ≥ t+ 1 for each
A ∈ A.

This lemma is the key ingredient of the proof of Theorem 1.2, which we can now provide.
As indicated in Section 1, we transform the setting of compositions to a setting of sets of
pairs.

Proof of Theorem 1.2. Let k ≥ t + 2 and n ≥ c(k, t). Let A be a non-empty strongly
t-intersecting subset of Cn,k. Write a for a composition (a1, . . . , ak). Let Sa = {(i, ai) : i ∈
[k]}. Let Cn,k = {Sa : a ∈ Cn,k}. Let f : Cn,k → Cn,k such that f(a) = Sa for each a ∈ Cn,k.
Clearly, f is a bijection. Note that two compositions a and b strongly t-intersect if and
only if |Sa ∩ Sb| ≥ t. Thus, a subset I of Cn,k is strongly t-intersecting if and only if
{Sa : a ∈ I} is a t-intersecting subfamily of Cn,k.

Letting A = {f(a) : a ∈ A}, we have that |A| = |A|, A is a t-intersecting subfamily
of Cn,k, and |X| = k for each X ∈ A.

3



Suppose that the sets in A have t common elements (h1, dh1), . . . , (ht, dht). Let D =
{(a1, . . . , ak) ∈ Cn,k : ahi

= dhi
for each i ∈ [t]}. Thus A ⊆ D. Let p =

∑t
i=1 dhi

. Note
that |D| = |Cn−p,k−t| =

(
n−p−1

n−p−k+t

)
. Since dhi

≥ 1 for each i ∈ [t], we have p ≥ t. Hence
|D| ≤

(
n−t−1
n−k

)
, and equality holds if and only if p = t. Now p = t if and only if dhi

= 1

for each i ∈ [t]. Thus |A| ≤
(
n−t−1
n−k

)
, and equality holds if and only if A = {(a1, . . . , ak) ∈

Cn,k : ahi
= 1 for each i ∈ [t]}.

Now suppose that the sets in A do not have t common elements, so A is a non-trivial
t-intersecting family. By Lemma 2.1, there exists a set J such that |J | ≤ 3k − 2t − 1
and |X ∩ J | ≥ t + 1 for each X ∈ A. Thus A ⊆

⋃
T∈( J

t+1)
{X ∈ Cn,k : T ⊂ X}. Let

T ∗ ∈
(

J
t+1

)
such that |{X ∈ Cn,k : T ⊂ X}| ≤ |{X ∈ Cn,k : T ∗ ⊂ X}| for all T ∈

(
J

t+1

)
. Let

B = {X ∈ Cn,k : T ∗ ⊂ X}. We have

|A| ≤
∣∣∣∣ ⋃
T∈( J

t+1)

{X ∈ Cn,k : T ⊂ X}
∣∣∣∣ ≤ ∑

T∈( J
t+1)

|{X ∈ Cn,k : T ⊂ X}| ≤
∑

T∈( J
t+1)

|B|

=

(
|J |
t+ 1

)
|B| ≤

(
3k − 2t− 1

t+ 1

)
|B|.

Let B = {f−1(X) : X ∈ B}, so |B| = |B|. Let (l1, el1), . . . , (lt+1, elt+1) be the elements of
T ∗. Now B = {(a1, . . . , ak) ∈ Cn,k : ali = eli for each i ∈ [t + 1]}. Let q =

∑t+1
i=1 eli . We

have q ≥ t+ 1 and

|B| = |Cn−q,k−(t+1)| =
(

n− q − 1

n− q − k + (t+ 1)

)
≤
(

n− (t+ 1)− 1

n− (t+ 1)− k + (t+ 1)

)
=

(
n− t− 2

n− k

)
.

Hence |A| = |A| ≤
(
3k−2t−1

t+1

)
|B| ≤

(
3k−2t−1

t+1

)(
n−t−2
n−k

)
. Now

(
n−t−1
n−k

)
= n−t−1

k−t−1

(
n−t−2
n−k

)
. Thus,

since n ≥ c(k, t), we have
(
n−t−1
n−k

)
>
(
3k−2t−1

t+1

)(
n−t−2
n−k

)
, and |A| <

(
n−t−1
n−k

)
. 2

3 Dependence on k

We now show that the dependence of n on k is inevitable. Let Tn,k = {(a1, . . . , ak) ∈
Cn,k : ai = 1 for each i ∈ [t]} and Nn,k = {(a1, . . . , ak) ∈ Cn,k : |{i ∈ [t + 2] : ai = 1}| ≥
t+1}. Note that Tn,k and Nn,k are strongly t-intersecting subsets of Cn,k, and Tn,k is one
of the optimal families given by Theorem 1.2. We have

|Nn,k| − |Tn,k| =
(
(t+ 2)|Cn−t−1,k−t−1| − (t+ 1)|Cn−t−2,k−t−2|

)
− |Cn−t,k−t|

= (t+ 2)

(
n− t− 2

n− k

)
− (t+ 1)

(
n− t− 3

n− k

)
−
(
n− t− 1

n− k

)
=

(
n− t− 2

n− k

)(
t+ 2− (t+ 1)

k − t− 2

n− t− 2
− n− t− 1

k − t− 1

)
=

(
n− t− 2

n− k

)(
(t+ 1)(n− k)

n− t− 2
− n− k

k − t− 1

)
= (n− k)

(
n− t− 2

n− k

)(
(t+ 1)(k − t) + 1− n

(n− t− 2)(k − t− 1)

)
.

Thus, |Nn,k| > |Tn,k| if k + 1 ≤ n ≤ (t + 1)(k − t). No matter how large k or n is,
Theorem 1.2 does not hold if k+1 ≤ n ≤ (t+1)(k− t). In other words, we cannot replace
n ≥ c(k, t) by n ≥ n0(t) or k ≥ k0(t).

Acknowledgement: The author is indebted to the anonymous referees for checking the
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