A short proof of an Erdős-Ko-Rado theorem for compositions

Peter Borg
Department of Mathematics, University of Malta, Malta p.borg.02@cantab.net

Abstract

If a_{1}, \ldots, a_{k} and n are positive integers such that $n=a_{1}+\cdots+a_{k}$, then the tuple $\left(a_{1}, \ldots, a_{k}\right)$ is a composition of n of length k. We say that $\left(a_{1}, \ldots, a_{k}\right)$ strongly t-intersects $\left(b_{1}, \ldots, b_{k}\right)$ if there are at least t distinct indices i such that $a_{i}=b_{i}$. A set A of compositions is strongly t-intersecting if every two members of A strongly t-intersect. Let $C_{n, k}$ be the set of all compositions of n of length k. Ku and Wong [An analogue of the Erdős-Ko-Rado theorem for weak compositions, Discrete Mathematics 313 (2013), 2463-2468] showed that for every two positive integers k and t with $k \geq t+2$, there exists an integer $n_{0}(k, t)$ such that for $n \geq n_{0}(k, t)$, the size of any strongly t-intersecting subset A of $C_{n, k}$ is at most $\binom{n-t-1}{n-k}$, and the bound is attained if and only if $A=\left\{\left(a_{1}, \ldots, a_{k}\right) \in C_{n, k}: a_{i_{1}}=\cdots=a_{i_{t}}=1\right\}$ for some distinct i_{1}, \ldots, i_{t} in $\{1, \ldots, k\}$. We provide a short proof of this analogue of the Erdös-Ko-Rado Theorem. It yields an improved value of $n_{0}(k, t)$. We also show that the condition $n \geq n_{0}(k, t)$ cannot be replaced by $k \geq k_{0}(t)$ or $n \geq n_{0}(t)$ (that is, the dependence of n on k is inevitable), and we suggest a Frankl-type conjecture about the extremal structures for any n, k and t.

1 Introduction

Recently, Ku and Wong [18] proved an analogue of the classical Erdős-Ko-Rado Theorem [7] for weak compositions. In this note we provide a short proof of their result. We set up the main definitions and notation before stating the result.

Unless otherwise stated, we will use small letters such as x to denote non-negative integers or functions or elements of a set, capital letters such as X to denote sets, and calligraphic letters such as \mathcal{F} to denote families (that is, sets whose members are sets themselves). We call a set A an r-element set if its size $|A|$ is r. The family of all subsets of a set X is denoted by 2^{X}, and the family of all r-element subsets of X is denoted by $\binom{X}{r}$. For any integer $n \geq 1$, the set $\{1, \ldots, n\}$ of the first n positive integers is denoted by $[n]$.

If a_{1}, \ldots, a_{k} and n are positive integers such that $n=\sum_{i=1}^{k} a_{i}$, then the k-tuple $\left(a_{1}, \ldots, a_{k}\right)$ is a composition of n of length k. If a_{1}, \ldots, a_{k} and n are non-negative integers such that $n=\sum_{i=1}^{k} a_{i}$, then $\left(a_{1}, \ldots, a_{k}\right)$ is a weak composition of n of length k. Let $C_{n, k}$ be the set of all compositions of n of length k, and let $W_{n, k}$ be the set of all weak compositions of n of length k. An elementary counting result is that $\left|W_{n, k}\right|=\binom{n+k-1}{n}$. Since $W_{n-k, k}=\left\{\left(a_{1}-1, \ldots, a_{k}-1\right):\left(a_{1}, \ldots, a_{k}\right) \in C_{n, k}\right\},\left|C_{n, k}\right|=\binom{n-1}{n-k}$.

We say that $\left(a_{1}, \ldots, a_{k}\right)$ strongly t-intersects $\left(b_{1}, \ldots, b_{k}\right)$ if there exists $T \in\binom{[k]}{t}$ such that $a_{i}=b_{i}$ for each $i \in T$. We call a set A of k-tuples strongly t-intersecting if every two members of A strongly t-intersect.

Recently, Ku and Wong [18] proved the following result.
Theorem 1.1 ([18]) For every two positive integers k and t with $k \geq t+2$, there exists an integer $n_{0}(k, t)$ such that for $n \geq n_{0}(k, t)$, the size of every strongly t-intersecting subset A of $W_{n, k}$ is at most $\binom{n+k-t-1}{n}$, and the bound is attained if and only if for some $T \in\binom{[k]}{t}$, $A=\left\{\left(a_{1}, \ldots, a_{k}\right) \in W_{n, k}: a_{i}=0\right.$ for each $\left.i \in T\right\}$.

We provide a short proof of this result. It yields an improved value of $n_{0}(k, t)$. Let $c(k, t)=(k-t-1)\binom{3 k-2 t-1}{t+1}+t+2$.

Theorem 1.2 If $t \geq 1, k \geq t+2, n \geq c(k, t)$, and A is a strongly t-intersecting subset of $C_{n, k}$, then

$$
|A| \leq\binom{ n-t-1}{n-k}
$$

and equality holds if and only if for some $T \in\binom{[k]}{t}, A=\left\{\left(a_{1}, \ldots, a_{k}\right) \in C_{n, k}: a_{i}=\right.$ 1 for each $i \in T\}$.

This gives Theorem 1.1 as follows. Let $t \geq 1, k \geq t+2$, and $n \geq c(k, t)-k$. Let A be a strongly t-intersecting subset of $W_{n, k}$, and let $A^{\prime}=\left\{\left(a_{1}+1, \ldots, a_{k}+1\right):\left(a_{1}, \ldots, a_{k}\right) \in\right.$ $A\}$. So A^{\prime} is a strongly t-intersecting subset of $C_{n^{\prime}, k}$, where $n^{\prime}=n+k \geq c(k, t)$. By Theorem 1.2, $\left|A^{\prime}\right| \leq\binom{ n^{\prime}-t-1}{n^{\prime}-k}=\binom{n+k-t-1}{n}$, and equality holds if and only if for some $T \in$ $\binom{[k]}{t}, A^{\prime}=\left\{\left(a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right) \in C_{n^{\prime}, k}: a_{i}^{\prime}=1\right.$ for each $\left.i \in T\right\}$. So $|A| \leq\binom{ n+k-t-1}{n}$, and equality holds if and only if for some $T \in\binom{[k]}{t}, A=\left\{\left(a_{1}, \ldots, a_{k}\right) \in W_{n, k}: a_{i}=0\right.$ for each $\left.i \in T\right\}$. By a similar argument, Theorem 1.1 implies Theorem 1.2 for $n \geq n_{0}(k, t)+k$.

The problem is trivial for $t \leq k \leq t+1$. Let A be a strongly t-intersecting subset of $C_{n, k}$. If $k=t$, then A can only have one element. If $k=t+1$ and $\left(a_{1}, \ldots, a_{k}\right),\left(b_{1}, \ldots, b_{k}\right) \in A$, then for some $T \in\binom{[k]}{t}$, we have $a_{i}=b_{i}$ for $i \in T$. Only one index is outside T. Since $\left(a_{1}, \ldots, a_{k}\right)$ and $\left(b_{1}, \ldots, b_{k}\right)$ have the same sum n, they must therefore also agree in the remaining position, so $|A|=1$.

The value of $n_{0}(k, t)$ obtained in [18] for Theorem 1.1 is $\max \left\{\left((k-t-1)\binom{k}{t}\right)^{2},(2 k-\right.$ $\left.2 t)^{2^{k-t+1}}+1\right\}$. As we pointed out above, Theorem 1.1 holds with $n \geq c(k, t)-k$. It follows that Theorem 1.1 holds with $n \geq(k-t-1)(3 k-2 t-1)^{t+1}$.

The dependence of n on t in Theorem 1.2 can be avoided by taking n to be sufficiently large. A crude way of showing this is that $c(k, t) \leq k\binom{3 k-2 t-1}{t+1}<k\binom{3 k}{t+1}<k\binom{3 k}{\lfloor 3 k / 2\rfloor}$; so the result is true for $n \geq k\binom{3 k}{\lfloor 3 k / 2\rfloor}$. In Section 3 we show that the dependence of n on k is inevitable and that we cannot even replace $n \geq c(k, t)$ by $k \geq k_{0}(t)$.

Theorems 1.1 and 1.2 are analogues of the classical Erdôs-Ko-Rado (EKR) Theorem [7], which inspired many results in extremal set theory (see [6, 10, 8, 3]). A family \mathcal{A} of sets is t-intersecting if every two sets in \mathcal{A} have at least t common elements. The EKR Theorem says that for $1 \leq t \leq k$, there exists an integer $n_{0}(k, t)$ such that for $n \geq n_{0}(k, t)$, the size of any t-intersecting subfamily of $\binom{[n]}{k}$ is at most $\binom{n-t}{k-t}$, which is the size of the simplest t-intersecting subfamily $\left\{A \in\binom{[n]}{k}:[t] \subseteq A\right\}$. It was also shown in [7] that the smallest possible value of $n_{0}(k, 1)$ is $2 k$. There are various proofs of this (see $[16,11,14,5]$), two of which are particularly short and beautiful: Katona's [14], introducing the elegant cycle method, and Daykin's [5], using the powerful KruskalKatona Theorem [15, 17]. Frankl [9] showed that for $t \geq 15$, the smallest possible value
of $n_{0}(k, t)$ is $(k-t+1)(t+1)$. Subsequently, Wilson [20] proved this for all $t \geq 1$. Frankl [9] conjectured that the size of a largest t-intersecting subfamily of $\binom{[n]}{k}$ is $\max \{\mid\{A \in$ $\left.\left.\binom{[n]}{k}:|A \cap[t+2 i]| \geq t+i\right\} \mid: i \in\{0\} \cup[k-t]\right\}$. A remarkable proof of this conjecture together with the complete characterisation of the extremal structures was obtained by Ahlswede and Khachatrian [1]. The t-intersection problem for $2^{[n]}$ was completely solved by Katona [16]. These are prominent results in extremal set theory.

As will become clearer in the proof, Theorem 1.2 can also be phrased in terms of t intersecting subfamilies of a family. Indeed, it is equivalent to the following: if $n \geq c(k, t)$ and \mathcal{A} is a t-intersecting subfamily of the family $\mathcal{C}_{n, k}=\left\{\left\{\left(1, a_{1}\right), \ldots,\left(k, a_{k}\right)\right\}:\left(a_{1}, \ldots, a_{k}\right) \in\right.$ $\left.C_{n, k}\right\}$, then $|\mathcal{A}| \leq\binom{ n-t-1}{n-k}$, and equality holds if and only if for some $T \in\binom{[k]}{t}, \mathcal{A}=$ $\left\{\left\{\left(1, a_{1}\right), \ldots,\left(k, a_{k}\right)\right\} \in \mathcal{C}_{n, k}: a_{i}=1\right.$ for each $\left.i \in T\right\}$.

EKR-type results have been obtained in a wide variety of contexts, many of which are surveyed in $[6,10,8,3]$. Usually the objects have symmetry properties (see [4, Section 3.2] and [19]) or enable use of compression operators (also called shift operators) to push t intersecting families towards a desired form (see $[10,13,12]$). One of the main motivating factors behind this note is that although the family $\mathcal{C}_{n, k}$ does not have any of these properties, we can still determine its largest t-intersecting subfamilies for n sufficiently large, using more than one method. It is interesting that Ku and Wong [18] managed to take an inductive approach. We will show that the method in [7] can be adapted to this framework. However, since $\mathcal{C}_{n, k}$ does not have any of the above properties, the problem of determining the maximum size of a t-intersecting subfamily of $\mathcal{C}_{n, k}$ for any n, k and t must be very hard. We conjecture that the extremal structures are similar to those in the above-mentioned conjecture of Frankl (proved in [1]). We state the conjecture using the original formulation.

Conjecture 1.3 Let $1 \leq t \leq k \leq n$. For $i=0, \ldots,\left\lfloor\frac{k-t}{2}\right\rfloor$, let $A_{i}=\left\{\left(a_{1}, \ldots, a_{k}\right) \in\right.$ $\left.C_{n, k}:\left|\left\{j \in[t+2 i]: a_{j}=1\right\}\right| \geq t+i\right\}$. The size of a largest strongly t-intersecting subset of $C_{n, k}$ is $\max \left\{\left|A_{i}\right|: 0 \leq i \leq\left\lfloor\frac{k-t}{2}\right\rfloor\right\}$.

2 Proof of Theorem 1.2

A t-intersecting family is non-trivial if its members have fewer than t common elements. The following lemma emerges from [7] (see also [2, Proof of Theorem 2.1]).

Lemma 2.1 If \mathcal{A} is a non-trivial t-intersecting family whose members are of size at most k, then there exists a set J of size at most $3 k-2 t-1$ such that $|A \cap J| \geq t+1$ for each $A \in \mathcal{A}$.

This lemma is the key ingredient of the proof of Theorem 1.2 , which we can now provide. As indicated in Section 1, we transform the setting of compositions to a setting of sets of pairs.

Proof of Theorem 1.2. Let $k \geq t+2$ and $n \geq c(k, t)$. Let A be a non-empty strongly t-intersecting subset of $C_{n, k}$. Write a for a composition $\left(a_{1}, \ldots, a_{k}\right)$. Let $S_{\mathbf{a}}=\left\{\left(i, a_{i}\right): i \in\right.$ $[k]\}$. Let $\mathcal{C}_{n, k}=\left\{S_{\mathbf{a}}: \mathbf{a} \in C_{n, k}\right\}$. Let $f: C_{n, k} \rightarrow \mathcal{C}_{n, k}$ such that $f(\mathbf{a})=S_{\mathbf{a}}$ for each $\mathbf{a} \in C_{n, k}$. Clearly, f is a bijection. Note that two compositions a and \mathbf{b} strongly t-intersect if and only if $\left|S_{\mathbf{a}} \cap S_{\mathbf{b}}\right| \geq t$. Thus, a subset I of $C_{n, k}$ is strongly t-intersecting if and only if $\left\{S_{\mathbf{a}}: \mathbf{a} \in I\right\}$ is a t-intersecting subfamily of $\mathcal{C}_{n, k}$.

Letting $\mathcal{A}=\{f(\mathbf{a}): \mathbf{a} \in A\}$, we have that $|\mathcal{A}|=|A|, \mathcal{A}$ is a t-intersecting subfamily of $\mathcal{C}_{n, k}$, and $|X|=k$ for each $X \in \mathcal{A}$.

Suppose that the sets in \mathcal{A} have t common elements $\left(h_{1}, d_{h_{1}}\right), \ldots,\left(h_{t}, d_{h_{t}}\right)$. Let $D=$ $\left\{\left(a_{1}, \ldots, a_{k}\right) \in C_{n, k}: a_{h_{i}}=d_{h_{i}}\right.$ for each $\left.i \in[t]\right\}$. Thus $A \subseteq D$. Let $p=\sum_{i=1}^{t} d_{h_{i}}$. Note that $|D|=\left|C_{n-p, k-t}\right|=\binom{n-p-1}{n-p-k+t}$. Since $d_{h_{i}} \geq 1$ for each $i \in[t]$, we have $p \geq t$. Hence $|D| \leq\binom{ n-t-1}{n-k}$, and equality holds if and only if $p=t$. Now $p=t$ if and only if $d_{h_{i}}=1$ for each $i \in[t]$. Thus $|A| \leq\binom{ n-t-1}{n-k}$, and equality holds if and only if $A=\left\{\left(a_{1}, \ldots, a_{k}\right) \in\right.$ $C_{n, k}: a_{h_{i}}=1$ for each $\left.i \in[t]\right\}$.

Now suppose that the sets in \mathcal{A} do not have t common elements, so \mathcal{A} is a non-trivial t-intersecting family. By Lemma 2.1, there exists a set J such that $|J| \leq 3 k-2 t-1$ and $|X \cap J| \geq t+1$ for each $X \in \mathcal{A}$. Thus $\mathcal{A} \subseteq \bigcup_{T \in\binom{J}{t+1}}\left\{X \in \mathcal{C}_{n, k}: T \subset X\right\}$. Let $T^{*} \in\binom{J}{t+1}$ such that $\left|\left\{X \in \mathcal{C}_{n, k}: T \subset X\right\}\right| \leq\left|\left\{X \in \mathcal{C}_{n, k}: T^{*} \subset X\right\}\right|$ for all $T \in\binom{J}{t+1}$. Let $\mathcal{B}=\left\{X \in \mathcal{C}_{n, k}: T^{*} \subset X\right\}$. We have

$$
\begin{aligned}
|\mathcal{A}| & \leq\left|\bigcup_{T \in\binom{J}{t+1}}\left\{X \in \mathcal{C}_{n, k}: T \subset X\right\}\right| \leq \sum_{T \in\binom{J}{t+1}}\left|\left\{X \in \mathcal{C}_{n, k}: T \subset X\right\}\right| \leq \sum_{T \in\binom{J}{t+1}}|\mathcal{B}| \\
& =\binom{|J|}{t+1}|\mathcal{B}| \leq\binom{ 3 k-2 t-1}{t+1}|\mathcal{B}| .
\end{aligned}
$$

Let $B=\left\{f^{-1}(X): X \in \mathcal{B}\right\}$, so $|B|=|\mathcal{B}|$. Let $\left(l_{1}, e_{l_{1}}\right), \ldots,\left(l_{t+1}, e_{l_{t+1}}\right)$ be the elements of T^{*}. Now $B=\left\{\left(a_{1}, \ldots, a_{k}\right) \in C_{n, k}: a_{l_{i}}=e_{l_{i}}\right.$ for each $\left.i \in[t+1]\right\}$. Let $q=\sum_{i=1}^{t+1} e_{l_{i}}$. We have $q \geq t+1$ and
$|B|=\left|C_{n-q, k-(t+1)}\right|=\binom{n-q-1}{n-q-k+(t+1)} \leq\binom{ n-(t+1)-1}{n-(t+1)-k+(t+1)}=\binom{n-t-2}{n-k}$.
Hence $|A|=|\mathcal{A}| \leq\binom{ 3 k-2 t-1}{t+1}|\mathcal{B}| \leq\binom{ 3 k-2 t-1}{t+1}\binom{n-t-2}{n-k}$. Now $\binom{n-t-1}{n-k}=\frac{n-t-1}{k-t-1}\binom{n-t-2}{n-k}$. Thus, since $n \geq c(k, t)$, we have $\binom{n-t-1}{n-k}>\binom{3 k-2 t-1}{t+1}\binom{n-t-2}{n-k}$, and $|A|<\binom{n-t-1}{n-k}$.

3 Dependence on k

We now show that the dependence of n on k is inevitable. Let $T_{n, k}=\left\{\left(a_{1}, \ldots, a_{k}\right) \in\right.$ $C_{n, k}: a_{i}=1$ for each $\left.i \in[t]\right\}$ and $N_{n, k}=\left\{\left(a_{1}, \ldots, a_{k}\right) \in C_{n, k}:\left|\left\{i \in[t+2]: a_{i}=1\right\}\right| \geq\right.$ $t+1\}$. Note that $T_{n, k}$ and $N_{n, k}$ are strongly t-intersecting subsets of $C_{n, k}$, and $T_{n, k}$ is one of the optimal families given by Theorem 1.2. We have

$$
\begin{aligned}
\left|N_{n, k}\right|-\left|T_{n, k}\right| & =\left((t+2)\left|C_{n-t-1, k-t-1}\right|-(t+1)\left|C_{n-t-2, k-t-2}\right|\right)-\left|C_{n-t, k-t}\right| \\
& =(t+2)\binom{n-t-2}{n-k}-(t+1)\binom{n-t-3}{n-k}-\binom{n-t-1}{n-k} \\
& =\binom{n-t-2}{n-k}\left(t+2-(t+1) \frac{k-t-2}{n-t-2}-\frac{n-t-1}{k-t-1}\right) \\
& =\binom{n-t-2}{n-k}\left(\frac{(t+1)(n-k)}{n-t-2}-\frac{n-k}{k-t-1}\right) \\
& =(n-k)\binom{n-t-2}{n-k}\left(\frac{(t+1)(k-t)+1-n}{(n-t-2)(k-t-1)}\right) .
\end{aligned}
$$

Thus, $\left|N_{n, k}\right|>\left|T_{n, k}\right|$ if $k+1 \leq n \leq(t+1)(k-t)$. No matter how large k or n is, Theorem 1.2 does not hold if $k+1 \leq n \leq(t+1)(k-t)$. In other words, we cannot replace $n \geq c(k, t)$ by $n \geq n_{0}(t)$ or $k \geq k_{0}(t)$.

Acknowledgement: The author is indebted to the anonymous referees for checking the paper carefully and providing remarks that led to an improvement in the presentation.

References

[1] R. Ahlswede, L.H. Khachatrian, The complete intersection theorem for systems of finite sets, European J. Combin. 18 (1997), 125-136.
[2] P. Borg, Extremal t-intersecting sub-families of hereditary families, J. London Math. Soc. 79 (2009), 167-185.
[3] P. Borg, Intersecting families of sets and permutations: a survey, in: Advances in Mathematics Research (A.R. Baswell Ed.), Volume 16, Nova Science Publishers, Inc., 2011, pp 283-299, available at http://arxiv.org/abs/1106.6144.
[4] P. Borg, The maximum sum and the maximum product of sizes of cross-intersecting families, European J. Combin. 35 (2014), 117-130.
[5] D.E. Daykin, Erdôs-Ko-Rado from Kruskal-Katona, J. Combin. Theory Ser. A 17 (1974), 254-255.
[6] M. Deza, P. Frankl, The Erdős-Ko-Rado theorem - 22 years later, SIAM J. Algebraic Discrete Methods 4 (1983), 419-431.
[7] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 12 (1961), 313-320.
[8] P. Frankl, Extremal set systems, in: R.L. Graham, M. Grötschel and L. Lovász (Eds.), Handbook of Combinatorics, Vol. 2, Elsevier, Amsterdam, 1995, pp. 1293-1329.
[9] P. Frankl, The Erdős-Ko-Rado Theorem is true for $n=c k t$, Proc. Fifth Hung. Comb. Coll., North-Holland, Amsterdam, 1978, pp. 365-375.
[10] P. Frankl, The shifting technique in extremal set theory, in: C. Whitehead (Ed.), Combinatorial Surveys, Cambridge Univ. Press, London/New York, 1987, pp. 81-110.
[11] A.J.W. Hilton, E.C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 18 (1967), 369-384.
[12] F.C. Holroyd, C. Spencer, J. Talbot, Compression and Erdős-Ko-Rado graphs, Discrete Math. 293 (2005), 155-164.
[13] G. Kalai, Algebraic shifting, Computational commutative algebra and combinatorics (Osaka, 1999), Adv. Stud. Pure Math., vol. 33, Math. Soc. Japan, Tokyo, 2002, pp. 121-163.
[14] G.O.H. Katona, A simple proof of the Erdős-Chao Ko-Rado theorem, J. Combin. Theory Ser. B 13 (1972), 183-184.
[15] G.O.H. Katona, A theorem of finite sets, in: Theory of Graphs, Proc. Colloq. Tihany, Akadémiai Kiadó, 1968, pp. 187-207.
[16] G.O.H. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hungar. 15 (1964), 329-337.
[17] J.B. Kruskal, The number of simplices in a complex, in: Mathematical Optimization Techniques, University of California Press, Berkeley, California, 1963, pp. 251-278.
[18] C.Y. Ku, K.B. Wong, An analogue of the Erdős-Ko-Rado theorem for weak compositions, Discrete Math. 313 (2013), 2463-2468.
[19] J. Wang, H. Zhang, Cross-intersecting families and primitivity of symmetric systems, J. Combin. Theory Ser. A 118 (2011), 455-462.
[20] R.M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combinatorica 4 (1984), 247-257.

